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Abstract—The effects of shearing on the emergence of bifurcation modes during the rolling of clad
metals are studied. Previous studies of bifurcation modes in layered solids assumed that rolling
could be modeled as a simple, homogeneous compression, with zero shear stress acting parallel to
the layers. This clearly ignores friction which is necessanly present between the sheets and the rolls.
In this paper. two new prebifurcation states, each reminiscent of a different type of shearing that
occurs in rolled clad metals. are considered; their tendencies to provoke bifurcation modes are
contrasted with previous predictions based on frictionless compression. As the governing differential
equation for incremental deformations is substantially more complex than before, a numerical
approach is devised to compute the bifurcation strains. The results of this approach, which are
shown to be extremely accurate by comparison with previously obtained results, indicate that
approximating rolling as a homogencous, frictionless compression may lead to substantial errors.

1. INTRODUCTION

During the process of roll-bonding clad metals (illustrated schematically in Fig. 1), and
during the rolling of already bonded clads, there occastonally occurs a spatially periodic
variation in the thickness of individual layers. While this variation may be so slight as to
be unnoticeable, it can also be so extreme as to cause an inner layer to break through the
cladding. The periodic stripes of core material penctrating the cladding are somctimes
referred to as tiger bands. In Fig. 2 we show this layer thickness variation, as obscrved by
Semiatin and Pichler (1979), in an already bonded stainless steel clad aluminum subjected
to rolling. This phenomenon, which can be highly detrimental to the final propertics of the
clad. is still poorly understood. The ability to predict the onsct and development of layer
thickness variations would have a positive impact on the processing of clad metals.

Recently, a bifurcation model for the appearance of tiger bands during rolling has
been presented by the author (Steif, 1987, 1990). In Steif (1987), rolling was idcalized as a
homogencous, plane strain compression, and the strain at which a periodic deformation
pattern akin to tiger banding can exist was calculated. With a view to understanding
tiger banding during roll bonding, Steif (1990) reconsidered this problem, but relaxed the
condition of tangential velocity continuity between the layers. This reflects the fact that the
various sheets entering the bonding mill are not bonded to one another; the ease of slippage
would depend on the inter-layer friction which was taken to be zero. The reductions at
which tiger banding is possible were found to be substantially lower when tangential slippage
Is permitted.

piy

Fig. 1. Schematic of roll bonding.
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The present paper is in the spirit of Steif (1990) in thut it attempts to test the sensitivity
of the predicted bifurcation strains to certain idealizations which may be at odds with
reality. In particular, we will examine how the presence of shear stresses parallel to the
interface atfects predictions for the onset of tiger banding. Both previous attempts by the
author to model the emergence of thickness variations assumed that rolling can be viewed
as a plane strain compression which is imposed by rigid. frictionless platens. This simple
homogeneous prebifurcation state is an idealization for two reasons. First. when the sheets
are not symmetric about the center line between the rolls, or when the rolls are driven at
different speeds. there are likely to be shear stresses acting parallel to the interface. in
addition to the compression and tension that have been considered thus far. In order to
simulate this shear stress. we will consider a prebifurcation state which has a homogeneous
shear stress superposed on the simple compression.

Secondly. even when bonding a symmetric clad. the friction at the rolls induces shear
stresses . these stresses are anti-symmetric about the center line, attaining a maximum
vialue at the rolls. Below, we will present a prebifurcation stress state which reflects the
inhomogencous shearing to be found when rolling a symmetric clad. To appreciate this
stress state. some historical background is necessary. von Karman's (1925) pioneering one-
dimensional analysis of sheet rolling pointed out the significant role played by friction
when the rolls draw a sheet in at the entrance and then resist the sheet’s leaving at the exit.
However, the carliest rolling analyses assumed that the deformation is homogencous in
each cross-section along the roll are (the so-called slab method). and that the yielding is
independent of the shear stress. The severely inhomogencous state of strain that exists in
reality is illustrated most vividly in a classic paper by Orowan (1943), in which, among
other things, he presents a photograph of a slub of plasticine. containing alternating dark
and light layers, which was rolled with high friction.

While Orowan (1943) did not present a rolling analysis which accounts for the highly
inhomogeneous strain state that he observed in the plasticine, he did suggest a stress state
which is somewhat more realistic than the uniform deformation of the slab method. Orowan
appealed to Prandtls (1923) plance strain solution for a very long, thin, perfectly plastic
slab which is compressed between two rigid, rough platens (see Fig. 3a). In Prandtls
solution, which is valid away from the central part of the slab where the material would
remain elastic, the shear stress varies lincarly across the thickness and reaches the shear
flow stress at the platens. This allows relative motion between the slab and the rough platen,
as the curved slip lines are tangential to the slab ~platen interface. Orowan (1943) suggested
that the shear stresses acting on a rolled sheet are essentially the same as those acting on
the compressed slab (compare Figs 3a and 3b). except for the curvature associated with
the rolls. Below, we will show how the Prandtl -Orowan solution can be extended to a
symmetrically layered solid. This new solution, which is only approximate for a hardening
material, will constitute the prebiturcation field which reflects the shearing which is inherent
in the rolling process.

In Scction 2, we scet forth the prebifurcation fields to be considered, including a
bimaterial version of Prandt!’s compressed slab solution. Scction 3 contains a derivation of
the equations for incremental deformations at finite stratn which are appropriate to the
present problem featuring a particular class of inhomogencous prebifurcation states. In
Section 4, the bifurcation probiem is posed and the forms of the eigenmodes are discussed.
A highly accurate numerical scheme for determining the eigenstrains (reductions at which
tiger banding is possible) is presented in Section 5. The results are presented and discussed
in Scction 6, followed by a summary and conclusions in Section 7.

2. PREBIFURCATION STATES

In this section we present the two prebifurcation states to be considered in the study
of the effect of shearing on the emergence of tiger bands. The first state is intended to
capture the shearing which s associated with rolling an unsymmetric set of layers, or which
would arise from driving the rolls at different speeds. It consists of the homogeneous
compressive stress normal to the sheets considered in previous work, on which we superpose
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Fig. 2. Laver thickness viriation leading to tiger banding in a rolled stainless steel clad aluminum.
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Fig. 3a. Prandtl problem of a thin slab compressed between rough platens.
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Fig. 3b. Shear stresses during rolling.

a uniform shear stress. The finite strain solution for combined compression and shear is
now presented for a layered solid in which the individual materials are incompressible,
and are characterized by an isotropic, hyperclastic, J,-deformation theory of plasticity
(Hutchinson and Neale, 1978). In Scction 3, this choice of material law will be justified.

A three-layered solid to be subjected to extension and shear is shown schematically in
Fig. 4. For an incompressible material deforming in plane strain, three parameters define
the kinematics of this picce-wise constant deformation: ¢, the logarithmic strain in the
horizontal direction (equal to the same value in all layers) : 74, the shear strain angle in A ;
and 7. the shear strain angle in B, This combination of strains ensures compatibility of
deformations, and would be appropriate for any stacking sequence involving layers of two
materials A and B. Note that the three parameters &, y4 and 7y, are not independent. In
particular, we imagine the foading to be described by ¢ and 7,5 yy i1s determined by the
condition that the shear stress is continuous across the interface.

For a solid subjected to an extension ¢ and a shear y, the principal stretches are given
by

~.
|

= cosh 2e+ }77 +/sinh? 2e+y7 cosh 2& + 4y* (1a)

= cosh 2e+ 1y — /sinh? 26+ 77 cosh 2e+ 1y*, (1b)

~
ty
|

These stretches preserve incompressibility in that 4,4, = |. From the stretches, one can
find the logarithmic strains

Fig. 4. Symmetrically clad, three-layer solid subjected to extension and shearing.
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LA =lnl| 82=ln ;.2. (Zd.b)

The J,-deformation theory of plasticity takes the principal Cauchy stress difference
0,~—0- to be related to the principal strain difference according to

0, —0= gE;(EI"E:) (3)

where £, is the secant modulus.
In terms of ¢ and y, the principal directions are at angles 6* and 6* +n,2 from the x,
axis, where 0* satisfies
. e”*
sin 20* = v = . 4
/sinh? 2e+y%cosh 2+ Ly*

By combining (1)-(4) and the usual transformation formulae for stress components,
one can find the shear stress component g ,,, which must be continuous across the interface.
Equating the expressions for ¢,, in A and B leads to a single equation for yg. in terms of
the strains ¢ and 7., and material parameters in A and B (which determine £, in A and B).
The remaining quantities required for the bifurcation analysis can be readily derived.

Now, we present the prebifurcation stress state which is intended to mimic the shearing
which is inherent in the rolling process, even in ideally symmetric rolling. We consider the
problem of a symmetric laminate of three sheets, which are compressed by rough, rigid
platens (see Fig. 5). For now, we assume that all sheets are rigid, perfectly plastic; the outer
sheets have a plane strain tensile yield stress g, and the inner sheet has a plane strain tensile
yield stress 6. Of interest are solutions in which all layers are deforming, and for which
the deviatoric stresses are independent of the coordinate x . Our solution to this problem
is motivated by Prandtl’s (1923) solution to the single-layer problem (Fig. 3a) which is

given by
= — AL —(* y :
o = (c+ 5 )+Uy l (b) (5a)

X0y

(/53 —<(.+ 2b ) (Sb)
XHG

g = ;bv (5¢)

where ay is the yield stress of the layer, ¢ is any constant, and the layer has a thickness 2.
This solution presumes that the platens are sufficiently rough to sustain a shear stress equal
to the shear yield stress of the material 3gy. The curved slip lines are tangential to the
platen-metal interface ; thus, relative motion can occur along this interface. Note that this
solution is valid in the left portion of the sheet, away from the center (where the layer would
not be yielding plastically) and away from the ends (where end-effects will be significant).

Orowan (1943) took the Prandtl (1923) solution and used it to include the effect of the
shear stress on the yield condition at some point along the roll arc. Let o denote the average
tensile stress ¢, at a given cross-section, and let p denote the roll pressure (—¢,;). Instead
of the equation

40
2b 2a ‘———Px A
| 1
A B

Fig. 5. Definition of coordinates and dimensions in symmetrically clad. three-layer solid.
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G+p=oy (6)

which is commonly used in rolling analyses, and which is a reasonable approximation for
low shear stresses at the rolls. Orowan proposed the following equation:

i
a+p=zoy. )

This was obtained from the Prandtl solution by integrating over the cross-section. Clearly.
this approximation is most appropriate when the roll friction is very high.
For moderate levels of friction, Orowan utilized the stress distribution

X1 21,%, }
= =[5 oo 1-(55) .

Gr= ~ (c+ x‘t”) (8b)

Ul:=-':b“ (8¢)

where he interpreted the spatially constant shear stress at the platen-metal interface, 1, to
be equal to a Coulomb friction coctlicient times the pressure. From this, one finds a yield
condition which is somcwhere between (6) and (7). depending on where 1, lies along the
interval 0 < 7, < loy. Orowan immediately recognized that this solution is not strictly valid
over any finite extent of the compressed strip, as the interfacial shear stress is constant,
while the pressure varies lincarly with x;. Nevertheless, given all the approximations in these
one-dimensional theories for rolling, the distribution secems to be a useful approximation.

It is relatively straightforward to take the Prandtl and Orowan solutions for the single-
layer problem and generate the following one-parameter family of solutions to the three-
layer problem :

inA:
. Xymay _[mosx, : ‘
a“——((."‘ 2[) >+61\\/l < O'Ah ) (9:.1)
X, mo
Gy = — (C'*‘ ‘“L,)‘l;"g> (9b)
Xamoy
Gi2= 5 (%)
inB:
oy = -—(c+ x,;r;)a,,>+au I—(%) (9d)
7= —(er200%) 00)
X-ma
o= (9)

where the parameter m is a positive constant. These solutions satisfy the equilibrium
equations and the yield condition in each of A and B, as well as continuity of traction at



1796 P. S. SreiF

the interfaces between the layers. In addition, one can show that the corresponding strain
fields are derivable from velocities which are continuous at the interface. For m = |, the
shear stress in B at the platens is equal to the shear yield stress 4o, which allows B to slip
relative to the rough. rigid platens. Note that when m = 1 and ¢, = g3 = oy, this solution
reverts to the original Prandtl solution (5). An obvious feature of eqns (9). and one that is
crucial to a reinterpretation introduced below. is that the Von Mises invariant is constant
in each of A and B and equal. of course. to the respective yield strengths.

Introducing the family of solutions parameterized by m serves the same purpose as
does Orowan’s generalization of the Prandtl solution. The specific case of m = | corresponds
to a shear stress in material B at the platen which is equal to the shear yield stress ioy:
when the platens are insufficiently rough to sustain this shear stress, m will be less than 1.
There is a second restriction on i, in addition to the obvious one of m < | : the solution is
valid only if m < m*, where m* is defined by

(10)

This value m*, which can be greater than or less than one, corresponds to a shear stress at
the A-B interface which is cqual to the shear yield stress of A. Any higher value of m would
violate yield in material A. When m < m* < |, the platens may be too rough to allow
slippage of material B. We ignore this possibility and assume that the platen—-metal interface
is such that the stress state given by (9) is permitted to exist over the range 0 < m < m,,
where nu, is the minimum of m* and [, and that layer B is allowed to slip relative to the
platen at this level of shear stress.

The materials of interest to the bifurcation studics, however, are not pertectly plastic;
the hardening rates in A and B are consistently found to be crucial parameters in bifurcation
analyses. To make the necessiry leap to hardening materials, we simply follow Orowan’s
approach to rolling by reinterpreting the stress fields in (9) as pertaining to hardening
materials. Obviously, at a minimum, we must adopt a plasticity theory in which the yield
stress is a function of the Von Mises invariant, such as J;-deformation theory. Since, as
was pointed out above, the Von Mises invariant is constant in cach of A and B, the current
level of the flow stress is constant in cach of A and B. The flow stresses change, however,
as the sheets are compressed ; that is, o, and oy are functions of the remote loading (as
detailed below), but at any instant they are spatially constant. Unfortunately, this is not a
rigorous solution to the problem when the materials harden ; while mechanical equilibrium
is satisfied, the effective strain (analogous to the Von Mises invariant of the stresses) will
not be constant spatially and is, thus, incompatible with the assumption of a yield stress
that remains spatially constant.

Nevertheless, we will use this field as the prebifurcation state, and we justify its use by
appealing to the major purpose of this investigation : to assess the sensitivity of predictions
of tiger banding to deviations from the previously assumed prebifurcation state of homo-
geneous, frictionless compression. It is presumed that this bimaterial generalization of the
Prandtl field, despite its approximate nature for hardening materials, will provide useful,
qualitative insight into the sensitivity of bifurcation predictions to the shear stresses associ-
ated with the friction inherent in rolling. In employing this field, we are assuming that the
proper level of shear stress is provided at the platen-metal interface, and that it is uniform
n x,.

3. FIELD EQUATIONS

In this section a bricf review is given of the relevant field equations for solids deformed
into the finite strain range. We introduce the nominat stress with components n,;, and the
Cauchy (true) stress o, where all components arc taken with respect to a fixed Cartesian
frame. As is typical in bifurcation analyses, the reference configuration is taken to coincide
instantaneously with the current configuration. Then, the material time derivative of
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the components is related by
. v
fi, = 0,4 0wt s — Ouli;— 6 ulx — O uli,] (1)

where the summation convention on repeated indices is assumed. ( ); denotes a partial
derivative with respect to the spatial variable x,, #, is the material time derivative of n,,. av,,
denotes the (objective) Jaumann derivative of the Cauchy stress. and v, are the velocity
components. Below, it will be assumed that the strain-rates are related to the Jaumann rate
of the Cauchy stress. Continuing mechanical equilibrium is readily expressed in terms of
the nominal stress-rate by

i, =0. (12)

We now specialize these equations to an incompressible solid deforming in the x,-x,
plane. Incompressibility implies that the velocities are derivable from a scalar stream
function ¥ (x,. x;) according to

ty =%z 2= —Y%a- (13a,b)

Following Hill and Hutchinson (1975), we write the two relevant equilibrium equations
in the following form which is useful for incompressible materials:

g =) i = =4 +45), (14a)

Yy =ry) =iy = Yy 4000 0 (14b)

At this point, we justify the constitutive law introduced in Section 2. First, as was
explained above, a reinterpretation of the stress state (9) as pertaining to hardening materials
requires the material law to be based on the Von Mises or J, invariant. In choosing J,-defor-
mation theory, we appeal to the long-standing appreciation that the particular choice of
hardening rule has serious consequences for bifurcation predictions, such as buckling and
nccking (Hutchinson, 1974). In particular, a plasticity theory based on a smooth yield
surface, which implies a stfl (clastic) response to non-proportional stress increments,
consistently leads to very high predictions of bifurcation strains. On the other hand, when
a deformation plasticity theory is used, or when the yield surface has a vertex, bifurcation
predictions are lower and more reasonable. Consistent with this experience, therefore, we
take the material to be described by Jo-deformation theory. This is convenient in that the
limit of m — 0in (9) corresponds to a uniform, frictionless compression—the prebifurcation
state previously studied (Steif, 1987, 1990) ; thus, this limiting case can readily provide a
test of the numerical technique which is introduced in Section 5.

In the case of plane strain deformations, J,-deformation theory connects the com-
ponents of the Jaumann stress-rate to the strain-rates according to the relation

) . Em - E . .o
X = iEmEu - "_3':71—“" 81 Ski€xt +P().,- (I 5)

where 0, is the Kronecker delta, £, is a modified secant modulus defined below, and p is
the hydrostatic pressure-rate. The tangent modulus, £, depends on J,, which is given by

Jy=ls,s, (16)
where the Cauchy stress deviator s,,. is defined, as usual, by

\)

Sy =0,— .l\okk(sl/' (17)

It is equivalent to viewing the moduli as functions of the effective stress, g., which is
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related to J. by 6 = 3/.. Then, as is usually done in J,-based plasticity theories. the tangent
modulus for a given value of effective stress is obtained from the stress—strain curve
measured in uniaxial tension.

In particular, we use (as in previous work) the hyperelastic J,-deformation theory of
Hutchinson and Neale (1978), in which case the modified secant modulus £, is given by

E, = /30.coth (\/Ei) (18)

where E, is the actual secant modulus (defined from the uniaxial stress-strain curve).
By combining eqns (11)—(15), and the strain-rate velocity relation

gu = 12['-‘1‘/ + vj.l] ( 19)

one can derive an extremely lengthy differential equation for the stream function . For
our purposes, however, a special case of this very general equation suffices. Consideration
of the two prebifurcation states presented in Section 2 indicates that, while the stresses may
vary from point to point (they do in the bimaterial Prandtl-Orowan solution), the effective
stress is always piece-wise constant; this implies that the secant and tangent moduli are
piece-wise constant. Assuming, then, that the moduli are spatially constant, one can derive
the following governing equation for the stream function y :

+[4Ba 25+ 200X+ [ 40250+ 2000 200

+2B(0 25124500022 — 20120 100) =)0

+H{=2B(0125110 +5010120+20120122) = 6,12]X 222

+[2B36 58, + 35,65, +20,30,1 ;=351 55) + 3601002

+[=2B(36 2811243511612 —20110,2, +451501) + 302200022
+2B(3110 1202+ 012200 228500 = 0120 (120 = $112) =181 + 1O 2 = 022D
+[=20(51101212+ 612200122+ 811.) —012.4(120 = 511.2) =G 1281 + 102201 =011 2N 22
F[=28Qs st onbnn =)+ 25200022+ 5000)

+25 0= ) +200 04200 0] =0 (20)

where f#is given by

o
|
[

Also of interest are the traction-rates i, and n,, ,, which are given by

iy = [—3En+Poiz+ 3o +0 2 + [BEn—Boiz =5 )It22 +[—2B0 251 + 012202
(21a)
—tizy = [2Bo s+ 0+ [Ea+ B(oi =45 — 1o +02)]002
+{=4fo50+20 000 2+ [ Ea—Boia =511 )X
+2A(@ st s+ 0102200) 502X
+[=28(0 125111+ 02051+ 012201) ~ Ho +022) )X 22

+[=28(01251 2+ 02250 F45 1 50) — (20 +022) )02 (21b)
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(Note that the spatial derivative of #,, allows for the hydrostatic pressure-rate to be
eliminated.)

In applying egns (20) and (21) to an incremental bifurcation problem, the stresses and
incremental moduli are those associated with the prebifurcation state. For the prebifurcation
state consisting of a homogeneous shear stress superposed on the compression, the stresses
are derivable from &, 74 and 73, as discussed above. From these stresses, one can compute
the effective stress. and then the moduli from the uniaxial stress—strain curve. For the case
of the modified Prandtl-Orowan solution, we view the prebifurcation state as parameterized
by a fictitious uniform thickness strain. From this fictitious strain, given by ¢;, = —¢,, > 0,
€12 = 0 (g, equal in both layers). we compute the effective stress in each layer from the
respective stress-strain curves, as well as the respective moduli. It is the effective stresses
which are the quantities 6,. and oy that appear in (9). This uniform thickness strain is
fictitious since the modified Prandtl-Orowan solution is only approximate ; as discussed in
Section 2. the evolving strain cannot really be uniform. Nevertheless, this approximate,
though perhaps reasonable, approach has the feature that it reduces precisely to the homo-
geneous, frictionless compression considered previously in the limit of mt — 0.

4. BIFURCATION MODES

In this section, we specify the two types of bifurcation modes which are of interest in
connection with layer thickness variations. The anti-symmetric mode involves deformation
of the core (material A) which is anti-symmetric about its centerline ; that is

va(x) = vy(=xy). (22

The symmetric mode involves deformation of the core that is symmetric about its centerline ;
that is

va(xr) = —va(—x:). (23)

Once cither of these modes develops sutficiently, it can lead to periodic fracture of the
cladding, as cxhibited in the rolling of an already bonded stainless steel clad aluminum
(depicted in Fig. 2). Previously, Steif (1987) predicted that the anti-symmetric mode (exhi-
bited by the sample in Fig. 2) would emerge first (at a lower reduction) when the cladding
is relatively thin and hard ; the symmetric mode was predicted to emerge first when the core
is relatively thin and hard. One issue of interest here is the effect of friction on the selection
of bifurcation modec.

Given this decomposition into symmetric and anti-symmetric modes, we can restrict
the field equations to the domain 0 < x, < b, though we need to impose the boundary
conditions

L.2(x),0) = %22:(x,.0) =0 (anti-symmetric mode) (24a)

$(x,.0) = 3.22(x;.0) =0 (symmetric mode). (24b)
We search for periodic eigenmodes which take the form
1(x,.x3) = fM(xy) sin wx, +¢*(x,) cos wx, (25a)
in A, and
x(x,.x3) = fH(x;) sin wx; +g"(x:) cos wx, (25b)

in B, where 2n/w is the wavelength of the mode. Inserting the forms (25) into the field eqn
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(20). and collecting terms proportional to sin wx, and cos wx,. one obtains two coupled,
fourth-order. ordinary differential equations for f(x.) and gix.). which we write sym-
bolically in the form

Llfg =0 (26a)
£ fy9;=0. (26b)

Previously, when rolling was idealized as a homogeneous, frictionless compression. it was
sufficient to search for eigenmodes proportional only to, say. sin wx,. The corresponding
calculation for eigenmodes proportional to cos wx, would yield identical results. These
modes become coupled [as can be seen from (20)]. once there ts shearing.

It may not be readily apparent that eigenmodes can be found in the separable form
(25) . why should the ordinary differential equations (26) be independent of x,? Whether
they are independent of x, is clearly tied to the form of the prebifurcation states. For the
prebifurcation state consisting of a homogeneous shear stress superposed on the homo-
geneous compression. all field quantities are picce-wise constant; in particular they are
independent of x;. On the other hand, the stresses in the bimaterial Prandtl-Orowan
solution do vary spatially. Notice, however, that the deviatoric stresses (and the moduli)
are independent of vy and that the hydrostatic pressure varies lincarly with x,. Together,
these imply that (26) will be independent of x,.

In addition to satisfying (26), the cigenmodes must satisfy various boundary condi-
tions. In particular, (24) imply the following two conditions on cach of f(x;) and g(x,):

YOy =gt ) = N 0) =gt () =0 (anti-symmetric mode) (27a)
SOy = gM0) = M (0) =g (0) =0 (symmetric mode) (27b)

where ()7 denotes a dertvative with respect to v,

At the rigid platen (v, = h), the cigenmodes are required to satisty zero normal velocity
and zero shear traction-rate. While these boundary conditions are perfectly consistent with
the previous model of rolling as a homogencous compression induced by frictionless platens,
the assumption of a vanishing shear traction-rate is less satistying here when the pre-
bifurcation ficld itsell” features non-zero shear stresses at the platen-metal interface. In
reality, one expects there to be some change in the shear stress as incremental interfacial
slippage occurs. Though this shear traction-rate is neglected at present, its effect probably
should be investigated in the future.

Finally, the cigenmodes must satisty certain continuity conditions at the interface
X, = «. This includes continuity of traction-rate, as well as continuity of velocities. Although
interfacial slippage —a discontinuity in the tangential velocity component —is not permitted
here, it is readily included, as it was in Steif (1990). Two pairs of velocity continuity
conditions, one corresponding to sin wx |, and one corresponding to cos wx, are obtained
from (13). Similarly, from the expressions for traction-rates given in (21), one can obtain
two pairs of traction-rute continuity conditions.

5. NUMERICAL APPROACH TO BIFURCATION CALCULATION

The numerical approach taken to solving the class of bifurcation problems outlined
above is perhaps best explained by contrast to the primarily analytic approach taken in
past studies of layer bifurcation problems. In previous bifurcation studies (Steif, 1987,
1990), it was possible to tind closed form solutions to the governing homogencous. fourth-
order differential equation for f(x,). in cach of A and B, in terms of four simple functions.
For example £ (x;) could be written in the form

SN = M) e /) F e M) F e f1(xg) (28)

where the functions /™ (xy) (j=1..... 4) arc simple functions (combinations of trig-
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onometric and hyperbolic functions). and ¢, are constant coefficients. Identical forms can
be found for the functions in B. Using the homogeneous boundary conditions at x, = 0 and
X, = b, one can immediately eliminate half of the undetermined coefficients. Imposing the
homogeneous continuity conditions at the interface leads to a set of four homogeneous
linear equations for the remaining coefficients. The terms in the associated matrix depend
nonlinearly on the applied strain and on the material parameters, but can be expressed in
closed form. The bifurcation strain, which corresponds to the lowest strain at which there
exists a non-trivial solution to the equations, was found by setting the determinant (which
1s calculated numerically) equal to zero. Here. with the governing differential equations
substantially more complicated. obtaining closed form homogeneous solutions is prohibi-
tive. Hence, a numerical approach was sought.

To state the previous approach in a different way : we considered the space of functions
which satisfy the governing homogeneous differential equation, and we searched for func-
tions in this space which satisfy the homogeneous boundary conditions at x, = 0 and
x; = b. and the homogeneous continuity conditions at x, = a. The basis for this space of
functions consists of the closed form, linearly independent, homogeneous solutions [i.e.
S/ (x2)] to the governing differential equation. Any function within this space is identified,
or parameterized. by the values of coefficients ¢;. Though closed form solutions can no
longer be found for the governing differential equations when the prebifurcation stress state
is inhomogeneous. we can take advantage of the lincarity (26) to establish a basis for the
space of functions to be searched.

A,

Let the basis function pairs {mk ) Ji=02.

Ipl ('YI)

0 < x; < aand satisfy the governing eqns (26). where @ (x,) is associated with f(x;). and
WM vy s associated with g(x:). Now, cach of the function pairs satisfies different initial
conditions at x, = 0; specitically,
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It is then possible to express the functions /™ (x;) and g*(x.) as lincar combinations
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of the basis functions as follows:

f*(.v)} . {w‘?(-r:)} : {w?(w} < {(p}‘(m} N {w?(n)}
M - 0 A 0 A A k N A M
{g-‘u:) SOl T OUseaf ™ MMl ™ QUi

e M. s e s
+g-*<0){“’""')}+g* (O){"’ “')}w“ (m{;‘j,}f:_"}w‘ (0){‘”*‘”}. (30)

Y3 Yalx2) :) Yl
. . . . (P!,;(x:) . . .
Likewise, the basis function pairs JP () (j=1.2..... 8) can be defined in the

domain a < x. < h. These functions also satisfy the governing eqns (26). as well as initial
conditions which are analogous to (29). except that the initial conditions are evaluated at
X. = b, instead of at x, = 0. The functions /®(x.) and ¢®(x,) can then be similarly expressed
as linear combinations of the basis functions in B.

Now, it needs to be determined whether some linear combination of the basis function
pairs can also satisfy the continuity conditions at x. = . Let the velocities and traction-
rates at x, = a. as evaluated in material A, be expressed in terms of sin wx; and cos wx,
components :

rHa) = e sin @y, + 07 cos ax, (31a)
Y (a) = P sinmx, + 0 cosmy, (31b)
Y (a) = l'r’:‘,\ Sty 42, Cos mx, (31c)
Y, ((a) = WY, sinwx 11 cos mx). (31d)

Obviously, by changing the superscript A in (31) 1o B, analogous expressions for the
velocities and traction-rates at X, = «, as ¢vialuated in material B, are defined. Then, the
interface conditions that need to be satisfied reduce to the cight equations

=l =0 =l =0 A= =0 ey = =0

W =i =00 A, =AY =0 A=At =0 iy —ahy = 0. (32)

To impose these conditions, one needs Lo express the quantities appearing in (32), in terms
of the basis function pairs. This can be done by combining (13), (21), (25) and (30). It is
crucial to note thuat the quantities in (32) depend only on the values of the basis functions
and their derivatives at v, = «. Since there is no need to know anything about the basis
functions except at x» = «, we can integrate the differential equations in A all the way from
X, = 0 to v, = a, without extracting the solution at intermediate points; likewise, in B, we
can integrate from x, = b directly to v, = «.

Now, we introduce the numerical part of the bifurcation calculations. Instead of
integrating two fourth-order ordinary differential equations to determine cach of the basis
function pairs and their derivatives at x, = «, we take the standard numerical route and
integrate cight first-order ordinary differential equations. This necessitates the introduction
of auxiliary functions which turn out to be convenient for implementing the continuity

A
.. - . . . . . pr(x;) .
conditions. For example, in computing the basis function pair {/,'\ ) } we introduce
functions 1,(x.) which are defined by ity

rix) = oty rav) =0t (6 ) = et () ) = e (xy)

yslx,) = 'Z’"x\(-":)l yoly:) = ‘//x\ (x2): valxy) = '/"1\'(-\':)1 relxy) = lﬂ,‘ (x,). (33)

With the initial conditions
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yi(0) =15 y:(0) = y3(0) = yo(0) = y5(0) = y6(0) = y7(0) = ys(M) =0 (34

we integrate the functions y,(x,) from x, = 0 to x, = a. The contribution to, say, ¢/, from

: . . Jolt(x, : . .
the basis function pair {i LE‘;} can be determined using the values of y; at x; = g, without
12
further differentiation. Of course. this contribution is scaled by the undetermined coefficient
/0.

To each of the terms in (32) with a superscript A, there are eight contributions from
the eight different initial conditions at x, = 0, each with its own undetermined coefficient ;
to each of the terms in (32) with a superscript B, there are eight contributions from
the eight different initial conditions at x, = . This results in eight equations and 16 un-
knowns. The remaining eight equations derive from the boundary conditions that we
imposed in Section 4 on the eigenmodes. Consider, for example, the anti-symmetric mode,
(P';\(x:)}
d’;\(x:)
(j = 2,4,6,8) do not contribute as their coefficient must always be zero ; hence, there remain
only four undetermined coefficients in A. Similarly, there are two boundary conditions at
X, = h, which when applied to both the sin wx, and cos w.x, components, reduce the number
of undetermined coefficients in B to four.

All of the above boils down to setting up a system of eight homogeneous lincar
equations, which we represent as

which corresponds to the conditions (27). In this case, the basis function pairs {

Mu=0 (3%

where u is a vector of undctermined cocfficients. Again, the first four columns of M
(corresponding to terms with a superscript A) are arrived at by four separate integrations
of the system of cight first-order ordinary differential equations in the interval 0 < x, < a,
cach integration beginning with different initial conditions. The last four columns of M
(corresponding to terms with a superscript B) are arrived at by similar integrations in the
interval @ < x, < b. The inner product of, say, the first row of M and the vector u represents
continuity of ¢, at the interface, and likewise for the other rows. If the determinant of M is
zero, then there exists a non-trivial vector of coefficients which satisfies all the homogeneous
continuity conditions at the interface.

The numerical accuracy of this method is limited by the accuracy of the numerical
integrations of the ordinary differential equations (which determine M), and by the evalu-
ation of the determinant of M. With regard to the numerical integrations, we employed a
highly accurate, fourth order Runge-Kutta scheme with step-size control to maintain a
certain error level (Press er al., 1986). In evaluating the determinant of M, certain care
must be exercised. It is convenient to express M in the following block form

A B
wa[ 1] 0o

and to use the following property of determinants
IM| = |A|ID~CA~'B| (37

where | | denotes the determinant of the enclosed matrix, and A~ is the inverse of A. Then,
one can keep track of the subdeterminants separately, as a function of the monotonically
increasing applied strain. The matrix M is first singular when one of the subdeterminants
is first zero. As a test of the accuracy of this method, it was applied to the previously
considered problem of anti-symmetric modes appearing during a homogeneous, frictionless
compression (Steif, 1987). Bifurcation strains were found to be essentially identical (answers
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to within seven significant figures were readily achieved). no doubt due to the accuracy
control of the Runge-Kutta integrating scheme.

In a numerical search for the strain at which | M| first vanishes, it is crucial to break
M into subdeterminants. The need for this is most easily appreciated when the present
method is applied to the case of a homogeneous, frictionless compression. As was mentioned
earlier, the sin wx, and cos wx, components can be considered separately (only shearing
terms not present in this case cause them to be coupled) ; furthermore, the eigenfunctions
f(x,) and g(.x.) are obviously identical. The matrix M that is set up issuch thatB=C =0
and A = D. While the determinant of M certainly vanishes when the determinant of A
vanishes, a numerical sweep of increasing strains will not reveal a change of sign in |M|,
because A and D change sign at precisely the same strain. On the other hand. |A| does
change signs as the point of vanishing determinant is passed. A similar problem occurs even
when there is shearing and the matrix M is fully populated.

6. RESULTS

Bifurcation calculations were carried out in the manner described in the above sections
for a variety of material parameters. A qualitative sense of the influence of shear stresses
on layer bifurcation can be conveyed, however, without an exhaustive parametric study.
Accordingly, the results presented here are based on computations involving a single set of
material propertics. We take cach of the materials A and B to be described by power-law
stress--strain curves of the form

g = ke

where k& and N are constants for a given material. In particular, the material constants were
chosen to be Ny = 0.189, Ny = 0.367, kg/ky = 9.0. These propertics represent a symmetric
stainless-steel clad  aluminum. Furthermore, we assume that the thickness ratio is
alh = 0.8333 (cach of the stainless steel layers is one-tenth as thick as the aluminum core).
The central purpose of our computations is to contrast bifurcation strains for dilferent
types of prebilurcation states: (i) a homogencous, frictionless compression (studied pre-
viously) ; (it) a compression with a homogencous shear stress; and (iti) the bimaterial
Prundtl-Orowan solution. For cach of states (ii) and (iii), there is a shearing parameter —
va/e for (i) and m for (iii) —which can be adjusted to vary the amount of shear relative to
compression.

For stitte (ii), a compression with a homogencous shear stress, we found the bifurcation
strains to be negligibly different from those associated with state (i), at least for shearing
rutios up to ya/e = |. Thercfore, results for state (ii) are not displayed. In Fig. 6 we contrast

0.6 7
0.5
e
0.4
0.3 T Y T al
0 1 2 3 4

Fig. 6. Anti-symmetric mode bifurcation strain as a function of wavelength, comparing difTerent
prebifurcation states (m = 0.0 ~ frictionless compression: m = 0.1 ~ bimatcrial Prandtl-Orowan
solution).



Frictional shear stresses in layered solids 1805

0.6 1
0.5
e
0.4 1
0.3 1
02 r — : .
0 1 2 3 4

Fig. 7. Symmetric mode bifurcation strain as a function of wavelength, comparing different pre-
bifurcation states (m = 0.0 ~ frictionless compression; m = 0.1 ~ bimaterial Prandtl-Orowan
solution).

the bifurcation strains of states (i) and (iii), for the particular case of the anti-symmetric
eigenmode. As explained above, m = 0 corresponds preciscly to state (i), the homogeneous,
frictionless compression. For the given sct of parameters, the limiting value m* would be
roughly 0.15. Tt can be seen that this form of a shearing tends to diminish the bifurcation
strain modestly (the difference is roughly 5%), at least in the range of wavelengths which
have the lowest bifurcation strains (wh ~ 1.0). Results for the symmetric mode are shown
in Fig. 7, where it can be scen that shearing significantly diminishes the bifurcation strain.

Variation of the anti-symmetric mode bifurcation strain with the shearing parameter
mis shown in Fig. 8 for a fixed wavelength wh = 1. The modest variation can be contrasted
with what is observed in the case of the symmetric mode (Fig. 9), in which the shearing has
a substantial effect on the bifurcation strain. In fact, when there is substantial shearing
(accounted for via the bimaterial Prandtl-Orowan solution), the symmetric mode becomes
the preferred mode. This is in contrast to that which occurs in the frictionless compression,
when the anti-symmetric mode emerges at a slightly lower strain.

0.45 1

0.43 1

0.41

0.39 1

0.37 1

0.35 T T T T -
0.00 0.03 0.06 0.09 0.12 0.1

m

Fig. 8. Anti-symmetric mode bifurcation strain as a function of friction parameter m (wb = 1.0).
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Fig. 9. Symmetric mode bifurcation strain as a function of friction parameter m (b = 2.0).

7. SUMMARY AND CONCLUSIONS

During the rolling. or roll-bonding, of clad metals, layer thickness variations can arise
which eventually led to tiger banding (periodic fracture of the cladding). A bifurcation
model predicting the onset of layer thickness variations was put forth previously, in which
rolling was idealized as a homogencous, frictionless compression. The present paper has
re-examined this highly idealized prebifurcation state, by employing two different pre-
bifurcation states, cach having shear stresses that are typical of rolling. Since the governing
differential equation for incremental deformations essentially defies analytic solution, a
suitable numerical technique was devised to obtain the bifurcation strains. A symmetrically
clad, three-layered solid was considered, and the possibility of both symmetric and anti-
symmetric bilurcation modes (periodic layer thickness variations) was explored. We found
that the presence of a homogencous shear stress acting parallel to the layers, which could
reflect rolls rotating at different speeds or an unsymmetrical layup, had a negligible effect
on the predicted biturcation strains. On the other hand, a prebifurcation state which
incorporated shear stresses reflecting the friction at the rolls led to significantly lower
predictions of biturcation strains, particularly in the case of symmetric modes.

Since our bimaterial Prandtl -Orowan solution —the prebifurcation state which reflects
roll friction  apparently has such a strong effect, it would be worthwhile to explore the
reasonableness of this solution further. It may be recalled that this solution, while correct
for a perfectly plastic solid, is approximate for 4 work hardening one. Perhaps a numerical
solution (c.g. finite clement) for the stress distribution in strain-hardening layers subjected
to pline strain compression could indicate the degree of approximation in the bimaterial
Prandtl Orowan solution. In addition, it may be necessary to explore the sensitivity of our
predictions to the metal-platen boundary condition. We assumed that there was zcro
increment in shear stress associated with the cigenmode. It is more likely, however, that the
platens put up some resistance to incremental relative motion, though they do not eliminate
it. Some means of incorporating this cffect should be made in the future. Of course, it would
be highly desirable to shed light on these issues by performing plane strain compression
tests on clad metals using platens with different degrees of lubrication.

Connecting the bifurcation analysis to rolling is necessarily suspect for an additional
reason. Strictly speaking, the bifurcation analysis is based on the assumption that the
prebifurcation state prevails over the infinite domain — o0 < x| < «o. One might argue that
the analysis is also relevant to a finite body, provided the appropriate lineal dimension of
the body. or the length in the v -direction over which the prebifurcation state prevails, is
at least several times the wavelengths of the predicted modes. Unfortunately, the stresses
of our bimaterial Prandtl-Orowan solution at best resemble the stresses induced during
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rolling (as Orowan would suggest) only over some portion near the entrance to the roll gap
and over some portion near the exit. Clearly, further steps are required before the bifurcation
analysis can account for the very complex stress states that are associated with rolling.
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